DIRECTED SYNTHESIS OF EXO, ENDO - BISHOMOBARRELENE^[*] AND TRISHOMO-BARRELENE^[*]

A. de Meijere, 0. Schallner and C. Weitemeyer Organisch-Chemisches Institut der Universität, D 3400 Göttingen, GERMANY

(Beceired in UK 19 June 1973; accepted for publication 13 **July 1973)**

Bridgehead chlorides of trishomobarrelene and trishomobullvalene have revealed an unprecedented solvolytic reactivity $^{\bf 1,\bf 2)}$. Continuing interest in these remarkable model systems has lead us to prepare several other bridgehead derivatives including the carboxylic acids, alcohols and methyl ethers^{2,3}. However, the unavailability of trishomobarrelene and trishomobullvalene on a larger scale has so far precluded a study of their bridgehead reactions on a broad scope.

We now wish to report a new convenient preparation of monohomobarrelene (1) as well as a directed synthesis of exo, endo-bishomobarrelene (2) and trishomobarrelene, which makes this series of hydrocarbons readily available in 20 to 50 g quantities.

Tricyclo[3.2.2.0^{2,4}]non-6-en-9-one (4) can be prepared in three steps with reasonable yield from cycloheptatriene and acrylonitrile $^{\text{4)}}$. The tosylhydra $^{\text{4}}$ zone (5) obtained from (4) and tosylhydrazide in ethanol (85 % yield), was reacted with two equivalents of methyllithium in dry ether⁵⁾ and gave (1) in 77 % yield. This procedure is superior to published preparations of (1) $^{\text{6,7}}$, because the overall yield (32 % based on 8-cyano-tricyclo[3.2.2.0^{2,4}]nonene-6) is higher⁶⁾ and it can be scaled up without difficulty^{7,8)}.

The cyclopropanation of (1) with diazomethane/cuprous chloride as reported⁹⁾ yields a mixture of exo , $endo-(2)$ and endo, endo-bishomobarrelene (6) along with trishomobarrelene (3). The modified Simmons-Smith reaction with methylene iodide and diethylzinc¹⁰⁾ when applied to (1) leads to a similar mixture of (2) (12 %), (6) (62 %) and (3) (26 %) in 85 % total yield. The yield of (3) obtained in this way is 22 % based on (1) , the largest proportion of starting material reacts to $(6/2)$, which for steric reasons, cannot undergo further methylene addition to form a trishomobarrelene stereoisomeric with (3).

This disadvantage, however, can be overcome by a directed stepwise addition of two methylene groups onto the skeleton of (1) . For instance, the cyclopropanation of (4) could only give one isomer of tetracyclo[3.3.2.0^{2,4}.0^{6,8}]decan-10-one (9). Unfortunately, (4) did not react with methylene iodide/zinocopper couple, although the Simmons-Smith reaction has successfully been used on a number of α,β -unsaturated ketones $^{11)}$. Ketalization of the carbonyl group was found to be necessary in this case $(90 \text{ %})^{12}$; the ethylene ketal $(2)^{13}$) then reacted in the expected way to form $(\underline{\beta})^{13}$, 14) (60 %), which upon hydrolysis gave <u>exo</u>, endo-tetracyclo[3.3.2.0^{2,4},0^{6,8}]decan-10-one (9)¹³⁾ (87 % yield). The tosylhydrazone of (9) (85 %) was reacted with methyllithium in dry ether in the same way as (5) to give pure ex , endo-bishomobarrelene (2) in 72 % yield.

Further cyclopropanation of (2) can now only lead to (3) . In this case the reaction with methylene iodide and diethylzinc $^{\rm 10}$) was found to give the best yields: 69 % (3) and 16 % (2) recovered, applying a threefold excess of the reagents. (2) could conveniently be separated from the mixture resulting in this procedure by vacuum distillation, through a 30 cm concentric tube col-

umn¹⁵⁾, the remaining (3) was finally purified by sublimation under reduced pressure, thus **allowing** the isolation of 20 to 50 g quantities in one batch. Distilled (2), b. p. 66 $^{\circ}$ C, 12 Torr and sublimed (3), m. p. 56 - 57 $^{\circ}$ C had NMR-spectra identical to those obtained for gaschromatographically purified samples, their purity as tested by analytical g. c. was found to be 98 % and > 99 % respectively.

References and footnotes

- [*] Systematic names: <u>exo</u>, <u>endo</u>-tetracyclo[3.3.2.0⁶'',0⁰'']decene-9 and pentacyclo[3.3.3.0⁴'*.0⁰⁹⁹⁰.0²⁹⁴¹]undecane respectively.
- 1) A. de Meijere, O. Schallner and C. Weitemeyer, Angew. Chem. 84, 63 (1972); Angew. Chem. internat. Edit. 11, 56 (1972)
- 2) A. de Meijere and O. Schallner, Angew. Chem. 85, 400 (1973); Angew. Chem. internat. Edit. 12, 399 (1973)
- 3) A. de Meijere and 0. Schallner, unpublished results
- 4) P. K. Freeman, D. M. Balls and D. J. Brown, J. Org. Chem. 33, 2211 (1968)
- 5) a) R. H. Shapiro and M. J. Heath, J. Amer. Chem. Soc. 89 , 5734 (1967); b) J. Meinwald and F. Uno, ibid. 90, 800 (1968)
- 6) a) J. Daub and P. von R. Schleyer, Angew. Chem. 80, 446 (1968); Angew. Chem. internat. Edit. 7, 468 (1968);
	- b) J. Daub, V. Trautz and U. Erhardt, Tetrahedron Lett., 4435 (1972)
- 7) a) H. H. Westberg and J. Dauben jr., Tetrahedron Lett., 5123 (1968); b) P. Radlick, R. Klem, S. Spurlock, J. J. Sims, E. E. van Tamelen and T. Whitesides, Tetrahedron Lett., 5117 (1968)
- 8) In our hands, the anodic oxydative bisdecarboxylation of tricyclo[3.2.2. $0^{2,4}$]non-6-en-9,10-dicarboxylic acid in aquaus pyridine $^{\prime\prime}$ gave at best 10 - 15 % yields (isolated). In addition, the electrolysis could only be run on a small scale (3 – 6 g of the dicarboxlic acid) $^{\prime\prime}$.
- 9) A. de Meiiere and C. Weitemeyer, Angew. Chem. 82, 359 (1970); Angew. Chem. internat. Edit. 2, 376 (1970)
- 10) J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron 24, 53 (1968); Tetrahedron Lett., 3495 (1968)
- 11) J. C. Limasset, P. Amice and J. M. Conia, Bull. Soc. Chim. France, 3981 (1969)
- 12) Alternatively, (4) was reduced with lithium aluminium hydride to a mixture of exo- and endo-tricyclol3.2.2.0^{2,4}]non-6-en-9-ol; in this mixture only the endo-isomer was readily cyclopropanated with methylene iodide/ zinc-copper couple, subsequent reoxidation then gave a mixture of (4) and (9), the yield of (9) (based on (4)) being about 50 % lower than in the other procedure.
- 13) All new compounds gave satisfactory elemental analysis data.
- 14) Here and in other cases we have made use of a modified <u>Simmons-Smith</u> procedure, cf. J. M. Denis, C. Girard and J. M. Conia, Synthesis 3, 549 (1972)
- 15) <u>W. Kuhn</u>: Präzisions-Destillationskolonne. Chemie-Ingenieur-Technik 6 (1957)

 $\mathbf{X}^{(n)}$ and $\mathbf{X}^{(n)}$ and $\mathbf{X}^{(n)}$